Dielectric and Magnetic Behavior of Polycrystalline Copper Doped Holmium Orthoferrite

Fumiya Tsunawaki, Mitsuhiro Matsuo, Hirokazu Shimooka, and Shigemi Kohiki

Department of Materials Science, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan

Polycrystalline HoFe_{1-x}Cu_xO₃ sample with x = 0, 0.01, 0.05, and 0.1 exhibited dielectric dispersion at 350, 225, 115, and 110 °C with the frequency of 100 kHz, respectively. The spin-reorientation temperature of the sample with x = 0.1 was higher by 2 K than that with x = 0. Substitution of Cu for Fe brought about lowering of the dielectric dispersion temperature and rising of the spin-reorientation temperature.

Recent discovery of the ferroelectric state below ≈ 330 K of LuFe₂O₄ by Ikeda et al.¹ recalled interests in dielectric properties of the rare-earth orthoferrites RFeO₃ (R: rare-earth element). The LuFe₂O₄ demonstrated dielectric dispersion around the magnetic ordering temperature $\approx 240 \text{ K.}^{1}$ The dielectric characteristic temperature of the LuFe₂O₄ is rather low for the material utilizable for practical magnetoelectric devices. While there are many studies on the magnetic properties of the $RFeO_3$,^{2,3} there are hardly the reports on dielectric properties. The RFeO₃ is known to crystallize in an orthorhombically distorted perovskite structure with space group *Pbnm*,⁴ and to exhibit weakferromagnetism WFM above room temperature RT. The RFeO₃ becomes promising material a with temperature-margins sufficient for practical device applications if it exhibits the dielectric dispersion around the Néel temperature $T_{\rm N}$. $T_{\rm N}$ of the holmium orthoferrite HoFeO₃ is known to be ≈ 640 K.^{5,6} As a first step to explore a new practical multifunctional material for applications, the dielectric and magnetic behavior of HoFe_{1-x}Cu_xO₃ was examined in this study.

In the orthorhombic unit cell of RFeO₃ the Fe atom is octahedrally coordinated by six oxygen atoms, and the R atoms are located in the large cavities formed by corner-linked FeO₆ octahedra. One of the oxygen atoms forms the common apex of the two adjacent octahedra, consequently each Fe atom is coupled to six neighbors nearest through Fe the superexchange Fe-O-Fe bond. Since the symmetry of the unit cell is low, the alignment of Fe³⁺ spin moments is not strictly antiparallel. Slightly canted Fe³⁺ spin moments give rise to a small net magnetization exhibiting WFM below T_N . At RT the direction of Fe-sublattice magnetization lies along the *a*-axis, thus a weak ferromagnetic moment $M_{\rm WFM}$ appears along the *c*-axis. In the field of Fe-sublattice, there is also a contribution due to the paramagnetic susceptibility of the R^{3+} ions. At the spin-reorientation temperature $T_{\rm R}$ the direction of the net magnetic moment rotates continuously from the *c*-axis to *a*-axis.⁷⁻¹¹ The HoFeO₃ undergoes spin-reorientation transition at $\approx 50 - 60$ K.^{12,13}

Substitution of Cu for Fe decreases $M_{\rm WFM}$ of the HoFeO₃ because the free ion magnetic moment of Cu²⁺ (1.9 $\mu_{\rm B}$) is smaller

than that of Fe^{3+} (5.9 μ_B). Since the Ho-sublattice magnetization remains at a constant, an increase of x is considered to lower $T_{\rm N}$ and to raise $T_{\rm R}$ for the HoFe_{1-x}Cu_xO₃. When the dielectric dispersion occurs around $T_{\rm N}$ of the HoFeO₃, the HoFe_{1-x}Cu_xO₃ is expected to demonstrate lowering of the dielectric dispersion temperature T_{disp} , and simultaneously rising of $T_{\rm R}$. Here we report presence of the dielectric dispersion around T_N of the HoFeO₃ (\approx 365 °C) for the sample with *x* = 0, and lowering of T_{disp} with x from 350 °C (x = 0) to 110 °C (x = 0.1) at the frequency f =100 kHz, and simultaneous rising of $T_{\rm R}$ by 2 K with the increase of x from 0 to 0.1.

The HoFe_{1-x}Cu_xO₃ samples were synthesized by calcination of the mixtures of Ho₂O₃, α -Fe₂O₃ and CuO powders. The Ho₂O₃ (purity >99.9%), α -Fe₂O₃ (purity >99.9%) and CuO (purity >98%) reagents were weighed out with the molar ratio of Ho : Fe : Cu = 1 : $1 \Box x$: x (x = 0, 0.01, 0.05,and 0.1), and then mixed in grinding. The mixture was heated at 1000 °C for 12 h in flowing oxygen gas. The powders were reground and heated a few times. As shown in the upper panel of Fig. 1, x-ray diffraction peaks for the samples were attributable to the orthorhombic perovskite structure. The lattice constants of the sample with x = 0 (a = 5.282, b = 5.592 and c = 7.607 Å) were in agreement with those reported (a = 5.282, b= 5.592 and c = 7.608 Å).¹⁴ As shown by the lower panel of Fig. 1, the lattice constants of the orthorhombic unit cell, especially those along the a- and c-axes, increased with x. Such increase of the lattice constants is expected to accompany with an elongation of the superexchange Fe-O-Fe bond, and then to lessen the cant angle θ of the Fe-sublattice magnetization relative to the *a*-axis. Judging from the ionic radii of Fe^{3+} $(0.65 \text{ Å}), \text{Cu}^{2+} (0.73 \text{ Å}) \text{ and } \text{Ho}^{3+} (0.90 \text{ Å}),$ the Cu^{2+} substituted for the Fe^{3+} of the HoFeO₃ lattice. Smaller θ and/or smaller $M_{\rm WFM}$ by the substitution would give rise to lowering of $T_{\rm N}$ and rising of $T_{\rm R}$.

As shown in Fig. 2, all the samples exhibited characteristic frequency dispersion in temperature dependence of the dielectric constant ε '. It is known that such dielectric relaxation phenomena are resulted from nano-scale polar-regions presented in the order-disorder type of ferroelectric materials, where motion of the ferroelectric domain boundary gives rise to the dispersion. The substitution is considered to bring about disorder in the arrangement of ion valence on the crystallographically equivalent Fe electric polarization sites. The with mesoscopic order in the HoFeO₃ was affected by statistical compositional fluctuation. The sample with x = 0 exhibited the dielectric dispersion around $T_{\rm N}$ ($\approx 365 \,^{\circ}{\rm C}$) of HoFeO₃. T_{disp} at f = 100 kHz of the samples with x = 0, 0.01, 0.05, and 0.1 were 350, 225, 115, and 110 °C, respectively. An increase of x lowered T_{disp} rather rapidly, but ε ' decreased linearly from 45 (x = 0) to 24 (x= 0.1). The Debye curves for dielectric dispersion ε' and absorption ε'' are symmetric about $\omega \tau = 1$. The midpoint of ε ' curve and the maximum of ε '' curve occur at a frequency of $\omega_{max} = 1/\tau$. At a given $T_{\rm p}$, such a characteristic temperature response frequency was found at a peak in the frequency variation of ε ". The value of the relative variation of T_p per decade of f,

 $(\Delta T_{\rm p}/T_{\rm p})/\Delta(\log_{10} f)$, for the samples with x =

0, 0.01, 0.05 and 0.1 were 0.37, 0.22, 0.38, and 0.34, respectively. They place the samples in the range of non-interacting fine particles.¹⁵ It is well known that the frequency dependence of T_p obeys an Arrhenius relation: $f = f_0 \exp(-E_a/k_BT)$ where f is the measured frequency, k_BT is the thermal energy, f_0 is a prefactor usually thought of as an attempt frequency, and E_a is the activation energy for polarization fluctuation of each polar-region. When we assume $f_0 = 3 \times 10^{11}$ Hz, the values of E_a for the samples with x = 0, 0.01, 0.05 and 0.1 are estimated to 0.95, 0.73, 0.57, and 0.55 eV, respectively. E_a decreased rather rapidly with *x*, as well as $T_{\text{disp.}}$

Field dependent magnetization of the samples with x = 0 and 0.1 measured at 300 K are shown in the upper panel of Fig. 3. The sample with x = 0 demonstrated a sharp increase of magnetization with increasing the applied field H below H = 0.05 T, and a linear field dependence of magnetization above H = 0.05 T. The sample with x = 0.1showed only the linear field dependence of magnetization. Such field dependences of magnetization were resulted from WFM based on the superexchange Fe-O-Fe bond. Extrapolation of a line fitted to the linear portion of the M-H curve intersects at a point of $M = M_{WFM}$ and of $H = H_i$. H_i is the internal field acting on the Ho sites.¹⁶ $M_{\rm WFM}$ and H_i amounted to $\approx 0.01 \ \mu_B/\text{Fe}$ and ≈ -0.1 T, respectively. H_i is antiparallel to H. An enhancement of the antiferromagnetic coupling for the sample with x = 0.1 is apparent, as shown in the lower panel of Fig. 3. The sample with x = 0 indicated WFM above ≈ 180 K, antiferromagnetism at \approx 180-70 K with the Weiss temperature $\Theta \approx$ -100 K, spin-reorientation at $\approx 70-50$ K, and paramagnetism below ≈ 50 K. A possible origin of the change at ≈ 180 K is crossover of the anisotropy contribution. The sample with x = 0.1 demonstrated antiferromagnetic behavior at the temperature ranging from ≈ 300 K to ≈ 70 K with $\Theta \approx -300$ K. Remarkable decease of $M_{\rm WFM}$ by the substitution is also indicated by the inset. enlarged zero-field-cooled The (ZFC)magnetization around $T_{\rm R}$ showed the peak-top shift of +2 K by the substitution. This is considered to be due to the smaller magnetic moment of the Cu²⁺ and/or a decrease of θ for antiferromagnetically coupled spin moments. Such $T_{\rm R}$ shift by the substitution was reconfirmed by employing thermoremanence TMR which the determines the phase transition temperatures of polycrystalline samples.¹⁷ Considerable difference between the field-cooled (*FC*) and *ZFC* magnetization appeared below 70 K (not shown). The temperature of the *TMR* curve falls down to a background level were 60 K and 63 K for the sample with x = 0 and 0.1, respectively. The substitution raised T_R as it was expected.

The HoFe_{1-x}Cu_xO₃ samples were highly resistive at 300 K. The order of the ac resistivity stayed at $10^6 \Omega$ cm at f = 100 kHzeven when Cu^{2+} substituted for Fe^{3+} . The upper panel of Fig. 4 shows an enlargement of the optical absorption ranging from 1.5 to 2 eV with x. As shown by the difference spectra in Fig. 4, especially the absorption peaked at 1.5 eV grew rapidly with x. In the octahedral crystal field, the five-fold-degenerated 3d-orbital splits into three-fold t_{2g} and two-fold e_g orbitals. These states line up $t_{2g\uparrow}$, $e_{g\uparrow}$, $t_{2g\downarrow}$, and $e_{g\downarrow}$ with increasing the energy, where \uparrow and ↓represent the up-spin and down-spin states, respectively. The electronic configuration for Fe³⁺ in the high-spin state is $t^{3}_{2g\uparrow}$ and $e^{2}_{g\uparrow}$, and that for Cu^{2+} is $t^3_{2g\uparrow}$, $e^2_{g\uparrow}$, $t^3_{2g\downarrow}$, and $e^1_{g\downarrow}$. Since the $e^{1}_{g\downarrow}$ state of Cu²⁺ is half-filled, the Fermi level of the Cu substituted samples are considered to align at the middle of the fundamental band gap (the energy difference between the $e_{g\uparrow}^2$ and $t_{2g\downarrow}$ states) of the sample with x = 0. As illustrated in the lower panel of Fig. 4, electron transition between the Cu²⁺ $e^{1}_{g\downarrow}$ state and the Fe³⁺ $t_{2g\downarrow}$ empty state brings about the optical at the energy absorption below the fundamental absorption energy. Because all the samples are fundamentally highly resistive, electron hopping between the Cu²⁺ $e^{1}_{g\downarrow}$ state and the Fe³⁺ $t_{2g\downarrow}$ empty state cannot be expected for the $HoFe_{1-x}Cu_xO_3$ samples the electron transition even when corresponds to the experimentally observed absorption peaked at 1.5 eV. The partially filled e_{g} band is expected to play a key role in the electronic properties of 3d-transition metal oxides. The Cu^{2+} substitution for Fe^{3+} would also give rise to generation of Fe⁴⁺

with $t_{2g\uparrow}^3$ and $e_{g\uparrow}^1$ to preserve the charge neutrality for the HoFe_{1-x}Cu_xO₃. Since the full-filled $e_{g\uparrow}^2$ state of Fe³⁺ and the half-filled $e_{g\uparrow}^1$ state of Fe⁴⁺ are considered to locate at the same energy level, electron hopping between Fe³⁺ and Fe⁴⁺ would partially occur in the HoFe_{1-x}Cu_xO₃ samples.

The HoFe_{1-*x*}Cu_{*x*}O₃ samples exhibited the dielectric dispersion indicating a typical character of order–disorder type ferroelectric materials. T_{disp} of the sample with x = 0 was $\approx 350 \,^{\circ}\text{C}$ at f = 100 kHz. The substitution of Cu for Fe lowered T_{disp} from 350 °C (x = 0) to 110 °C (x = 0.1). The increase of x from 0 to 0.1 raised simultaneously T_{R} by 2 K. The valence fluctuation in the Fe-sublattice played a central role for the dielectric response of HoFeO₃.

A part of this work was performed under the inter-university cooperate research program of the Advanced Research Center of Metallic Glasses, Institute for Materials Research, Tohoku University.

- 1 N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, Y. Murakami, K. Kakurai, K. Yoshii, S. Mori, Y. Horibe, H. Kito, *Nature (London)* **436** (2005) 1136.
- 2 Y.S. Didosyan, H. Hauser, H. Wolfmayer, J. Nicolics, P. Fulmek, Sens. Actuators A 106 (2003) 168.
- 3 Y.S. Didosyan, H. Hauser, W. Toriser, Int. J. Appl. Electron. 13 (2001) 277.
- 4 S. Geller, E.A. Wood, Acta Crystallogr. 9 (1956) 563.
- 5 S.C. Parida, S.K. Rakshit, Z. Singh, J. Solid State Chem. 181 (2008) 101.
- 6 M. Eibschutz, S. Shtrikman, D. Treves, Phys. Rev. 156 (1967) 562.
- 7 R.L. White, J. Appl. Phys. 40 (1969) 1061.
- 8 W.C. Koehler, E.O. Eollan, M.K. Wilkinson, Phys. Rev. 118 (1960) 58.
- 9 R.M. Bozorth, V. Kramer, Coloq. Int. Magn. Grenoble, Suppl. J. Phys. Radium 20 (1959) 329.
- 10 I.E. Dzyaloshinski, J. Phys. Chem. Solids 4 (1958) 241.
- 11 T. Moriya, Phys. Rev. 120 (1960) 91.
- 12 K. Saito, A. Sato, A. Bhattacharjee, M. Sorai, Solid State Commun. 120 (2001) 129.
- 13 J. Mareschal, J. Sivardiere, J. Phys. (Paris) **30** (1969) 967.
- 14 JCPDS 46-0115.
- 15 J.L. Dormann, D. Fiorani, E. Tronc, Adv. Chem. Phys. 98 (1997) 283.
- 16 A.H. Cooke, D.M. Martin, M.R. Wells, J. Phys. C 7 (1974) 3133.
- 17 A. Bombik, B. Lesniewska, A.W. Pacyna, J. Magn. Magn. Mater. 214 (2000) 243.

Fig. 1 by K.O/ KIT, JPN

Fig. 1 X-ray diffraction patterns (upper panel) and lattice constants for the orthorhombic unit cell (lower panel) of the samples with x = 0 (a), 0.01 (b), 0.05 (c), and 0.1 (d) measured with a Rigaku CN2013 diffractometer with Cu $K\alpha$ radiation.

Fig. 2 Dielectric dispersion and temperature variation of the characteristic frequency of the samples with x = 0, 0.01, 0.05, and 0.1 measured with a HP 4291 RF impedance analyzer. The dielectric constant measured at the frequency ranging from 30 kHz to 3 MHz in the external field E = 245 V/cm. The Arrhenius relation is indicated by a solid line for each sample.

Fig. 3 by K.O/ KIT, JPN

Fig. 3 Initial magnetization curves (upper panel) and temperature dependence of inverse susceptibility (lower panel) of the samples with x = 0 (\circ) and 0.1 (\Box) measured at 300 K by a Quantum Design MPMS 5S SQUID magnetometer. Inset: enlarged magnetization curves around $T_{\rm R}$ of the samples cooled in the field of 100 Oe. The arrows indicate the top of the curves.

Fig. 4 by K.O/ KIT, JPN

Fig. 4 Upper panel: ultraviolet-visible absorption spectra (the left hand side scale) of the samples with x = 0 (a), 0.01 (b), 0.05 (c), and 0.1 (d) measured with a JASCO V-550 spectrometer. Difference spectra (the right hand side scale) between the samples x = 0.01 and 0 (b – a), x = 0.05 and 0 (c – a), and x = 0.1 and 0 (d – a), are also presented. Lower panel: scheme of the electronic states of Fe³⁺ (d^5), Fe⁴⁺ (d^4) and Cu²⁺ (d^9) in the octahedral crystal field.