反応工学
Reaction Engineering

講義時間(場所)：火曜2限(8-1A)・木曜2限(S-2A)
担当：山村

補講 1/31(木)2限 S-2A
ジメチルエーテルの気相熱分解（1）

\[(CH_3)_2O \rightarrow CH_4 + H_2 + CO\]

設計仕様

処理量
\(v_0=4.8 \text{ m}^3/\text{h}\)

原料はDMEのみ

面積S

777K

反応率\(x_A=0.95\)まで熱分解

管型反応器の体積V[m³]を決定せよ。

ただし反応速度式
反応速度定数はともに不明

ラボ実験は自由に行ってよい。
反応速度式が不明の場合の手法

全モル数が変化する場合

a. 全圧追跡法
b. 積分法
c. 微分法

全モル数が変化しない場合

a. 積分法
b. 微分法
ジメチルエーテルの気相熱分解(2): 全圧追跡法

圧力計

実測結果 (777K)

熱分解により圧力が増加

diffusion

密閉反応実験

777K保温

圧力データから反応率xₐと反応速度定数kが求められるることを示す。
ジメチルエーテルの気相熱分解（3）：反応率の算出

\[(CH_3)_2O \rightarrow CH_4 + H_2 + CO\]

A→B+C+D

時刻tにおける成分Aのモル数n_Aは

\[n_A(t) = n_{A0}(1 - x_A)\]

t=0ではDMEのみ含まれるから

\[n_B(t) = n_C(t) = n_D(t) = n_{A0}x_A\]

反応器内の全モル数n_tはこれらの和だから

\[n_t(t) = n_A + n_B + n_C + n_D\]

\[= n_{A0}(1 + 2x_A)\]

別解

\[n_t(t) = n_{t0}(1 + \varepsilon_A x_A)\]

\[\varepsilon_A\]は定義から

\[\varepsilon_A \equiv (-1 - \frac{b}{a} + \frac{c}{a} + \frac{d}{a}) \frac{n_{A0}}{n_{t0}}\]

\[= (-1 + \frac{1}{1} + \frac{1}{1} + \frac{1}{1}) \frac{n_{A0}}{n_{t0}}\]

\[= 2 \frac{n_{A0}}{n_{t0}}\]

よって

\[n_t(t) = n_{t0}(1 + 2x_A)\]
ジメチルエーテルの気相熱分解（4）：反応率の算出つづき

理想気体を仮定する。密閉実験では体積V＝一定なので全成分についての状態方程式は

反応開始時(t=0) \[P_0V = n_{A0}RT \]

時刻t \[PV = n_tRT \]

圧力比を取ると \[\frac{P}{P_0} = \frac{n_t}{n_{A0}} = 1 + 2x_A \]

従って反応率は次式から求められる

\[x_A = \frac{1}{2} \left(\frac{P}{P_0} - 1 \right) \]
ジメチルエーテルの気相熱分解（5）

<table>
<thead>
<tr>
<th>時間 t[s]</th>
<th>全圧 P[kPa]</th>
<th>反応率 x_A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.6 (=P_0)</td>
<td>0</td>
</tr>
<tr>
<td>390</td>
<td>54.5</td>
<td>0.155</td>
</tr>
<tr>
<td>777</td>
<td>65.1</td>
<td>0.282</td>
</tr>
<tr>
<td>1195</td>
<td>74.9</td>
<td>0.400</td>
</tr>
<tr>
<td>3155</td>
<td>103.9</td>
<td>0.749</td>
</tr>
<tr>
<td>∞</td>
<td>124.1</td>
<td>0.992</td>
</tr>
</tbody>
</table>

手順（1）n次反応と仮定した式を導出する
（2）反応率を式に代入し、図の傾きから反応速度定数を求める
定容系\(n\)次反応\((n \neq 1)\)の場合（1）

回分型反応器の設計方程式より

\[
\frac{dC_A}{dt} = r_A
\]

\(n\)次反応の反応速度\(r_A\)は

\[- r_A = kC_A^n = kC_{A0}^n (1 - x_A)^n\]

上式に代入して

\[
\frac{dC_A}{dt} = -kC_{A0}^n (1 - x_A)^n
\]
定容系n次反応（n≠1）の場合（2）

\[C_A = C_{A0} (1 - x_A) \] であることに注意すると

\[- C_{A0} \frac{dx_A}{dt} = -kC_{A0}^n (1 - x_A)^n \]

時刻 \(t=0 \) から \(t \) まで積分する。\(t=0 \) で反応していない（\(x_A = 0 \)）ので

\[\int_0^{x_A} \frac{1}{(1 - x_A)^n} dx_A = \int_0^t kC_{A0}^{n-1} dt \]

\(n \neq 1 \) の場合、積分を実行すると

\[
\left[- \frac{1}{1-n} (1 - x_A)^{1-n} \right]_0^{x_A} = kC_{A0}^{n-1} t
\]

\[\therefore (1 - x_A)^{1-n} - 1 = (n-1)kC_{A0}^{n-1} t \]
定容系n次反応(n≠1)の場合（3）

\[
\frac{1-(1-x_A)^n}{(n-1)C_{A0}^{n-1}}
\]

- n=2 (2次反応)
- n=3 (3次反応)
- n=4 (4次反応)

n>2では直線関係が得られない
定容系1次反応（n=1）の場合（1）

回分型反応器の設計方程式より

\[
\frac{dn_A}{dt} = r_A V
\]

体積Vが一定なら、両辺をVで除して

\[
\frac{dC_A}{dt} = r_A
\]

定容系では1次反応A→Cの反応速度r_Aは

\[
-r_A = kC_A = kC_{A0}(1 - x_A)
\]

上式に代入して

\[
\frac{dC_A}{dt} = -kC_{A0}(1 - x_A)
\]
定容系1次反応（n=1）の場合（2）

\[C_A = C_{A0} (1 - x_A) \] であることに注意すると

\[\frac{dx_A}{dt} = k (1 - x_A) \]

時刻 \(t=0 \) から \(t \) まで積分する。 \(t=0 \) で反応していない \((x_A=0) \) ので

\[\int_0^{x_A} \frac{1}{1-x_A} dx_A = \int_0^t k dt \]

積分を実行すると

\[- \ln(1 - x_A) = kt \]
非定容系を考える。簡単のため温度・圧力は一定。

モル濃度は

\[C_A = \frac{C_{A0}(1-x_A)}{1 + \varepsilon_A x_A} \]

と表されるから、成分Aの反応速度は

\[-r_A = kC_A = kC_{A0} \left(\frac{1-x_A}{1 + \varepsilon_A x_A} \right) \]

定常状態における設計方程式は

\[0 = r_A + C_{A0}v_0 \frac{dx_A}{dV} \]

代入すると

\[dV = \frac{v_0}{k} \left(\frac{1 + \varepsilon_A x_A}{1 - x_A} \right) dx_A \]
積分すると

\[\int_0^V dV = \frac{V_0}{k} \int_0^{x_A} \left(\frac{1 + \varepsilon_A x_A}{1 - x_A} \right) dx_A \]

積分を実行して

\[V = \frac{V_0}{k} \int_0^{x_A} \left(-\varepsilon_A + \frac{1 + \varepsilon_A}{1 - x_A} \right) dx_A \]

\[= \frac{V_0}{k} \left[-\varepsilon_A x_A + (1 + \varepsilon_A) \ln \frac{1}{1 - x_A} \right] \]
管型反応器の設計計算(1)

反応実験から、このDMEの熱分解反応は
1次反応 \(A \rightarrow B + C + D \), \(-r_A = kC_A\), \(y_{A0} = 1\), \(\varepsilon_A = 2\)
反応速度定数 \(k = 4.3 \times 10^{-4} / \text{s} \),
体積流量 \(v_0 = 4.8 \text{ m}^3/\text{h} \)
目標反応率 \(x_A = 0.95 \)

設計方程式を解くと

\[
V = \frac{v_0}{k} \left[-\varepsilon_A x_A + (1 + \varepsilon_A) \ln \frac{1}{1 - x_A} \right]
\]

上の数値を代入すれば

\[
V = \frac{4.8/3600}{4.3 \times 10^{-4}} \left[-(2)(0.95) + (1+2) \ln \frac{1}{1-0.95} \right]
\]

\[
= 2.2 \text{m}^3
\]
反応器長さを10mとする。
内径5cmの反応管が何本必要か？

1. 10本
2. 100本
3. 1000本
内径5cm、長さ10mの反応管を用いるなら

管1本の体積は

\[\frac{\pi}{4} (5 \times 10^{-2})^2 (10) = 0.0196 \text{m}^3 \]

反応器体積はV=2.20m³だから、必要な管本数は

\[\frac{2.2}{0.0196} = 112 \text{本} \]
ミッション:

- 単一反応、複合反応の反応速度を記述をすることができる
- 定常状態近似により反応速度式を導出することができる
- 律速段階近似により反応速度式を導出することができる
- 連続槽型反応器の設計方程式を導出することができる
- 回分反応器の設計方程式を導出することができる
- 管型反応器の設計方程式を導出することができる
- 自触媒反応器の最適設計ができる
- 回分ラボ実験データから実スケールの反応器体積を求めることができる
- 回分反応器を用いた簡単なバイオリアクターの設計ができる
- 回分反応器を用いた逐次並列反応の設計計算を行うことができる
- 非等温反応器の安定操作条件を算出することができる
- 晶析反応器の設計計算を行うことができる
- 未反応核モデルを用いて管型反応器内の粒子反応を設計できる
定容回分型実験データを用いた管型反応器設計 report 7 氏名

過酸化ジー tert-ブチルの気相熱分解 \((A \rightarrow 2B+C)\) の反応式は次のようになる。

\[
(CH_3)_3 COOC(CH_3)_3 \rightarrow 2(CH_3)_2 CO + C_2 H_6
\]

この反応を 420.4K、等圧、体積流量 \(v_0 = 0.080 \text{m}^3/\text{h}\) の管型反応器内で行いたいが、反応速度定数等が分かっていない。そこで必要な反応器体積 \(V\) [m³] を求めるために、定容回分型反応器を用いた基礎実験を行った。ただし原料中には過酸化ジー tert-ブチルのみが含まれており、反応開始時の全モル数 \(n_{t0}\) は反応開始時の過酸化ジー tert-ブチルのモル数 \(n_{A0}\) [mol] に等しい。

【問1】定容回分型反応器内の過酸化ジー tert-ブチルの反応率を \(x_A\) と書けば、全モル数 \(n_t\) は次式で表されることを示せ。

\[
n_t(t) = n_A + n_B + n_C = n_{A0}(1 + 2x_A)
\]

【問2】理想気体を仮定すれば、定容回分型反応器における反応率は全圧 \(P\) と反応開始時の全圧 \(P_0\) の関数として次式で表されることを示せ。

\[
x_A = (P/P_0 - 1)/2
\]

【問3】温度 420.4K の定容回分型反応器で全圧 \(P\) [kPa] の計時変化を測定したところ、次の結果を得た。1次反応と仮定して時間と
\(-\ln(1-x_A)\) の関係をプロットし、直線関係が得られるのを確認せよ。また反応速度定数 \(k\) [1/s] を求めよ。

\[\begin{array}{cccccccc}
 t [s] & 0 & 360 & 600 & 1080 & 1320 & 1560 & 2040 & 2400 & 2760 \\
 P [kPa] & 23.9 & 26.5 & 28.1 & 30.9 & 32.3 & 33.7 & 36.2 & 38.0 & 39.6 \\
\end{array}\]

【問4】非定容管型反応器の設計方程式から反応率と体積 \(V\) の関係は次式で表される。ただし \(\varepsilon_A\) は \(n_i(t) \equiv n_{i0}(1 + \varepsilon_A x_A)\) で定義される。

\[
k(V/v_0) = (1 + \varepsilon_A) \ln \frac{1}{1-x_A} - \varepsilon_A x_A
\]

出口における過酸化ジー tert-ブチルの反応率が 0.90 で、直径 0.50m の円柱形管型反応器を設計したい。問3の結果を用いて必要な管型反応器の体積 \(V\) [m³] および反応器高さ \(Z\) [m] を求めよ。

\[
k = 1.46 \times 10^{-4}/s
\]

\[
(1.46 \times 10^{-4}) \left(\frac{V}{0.08/3600} \right) = (1 + 2) \ln \frac{1}{1 - 0.9} - (2)(0.9)
\]

\[
V = 0.77 \text{m}^3
\]

\[
Z = \frac{4}{\pi(0.5)^2} \times 0.77 = 3.9 \text{m}
\]